Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.917
Filtrar
1.
Sci Total Environ ; 927: 172395, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38608882

RESUMO

PVC microplastics (PVC-MPs) are environmental pollutants that interact with cadmium (Cd) to exert various biological effects. Ducks belong to the waterfowl family of birds and therefore are at a higher risk of exposure to PVC-MPs and Cd than other animals. However, the effects of co-exposure of ducks to Cd and PVC-MPs are poorly understood. Here, we used Muscovy ducks to establish an in vivo model to explore the effects of co-exposure to 1 mg/L PVC-MPs and 50 mg/kg Cd on duck pancreas. After 2 months of treatment with 50 mg/kg Cd, pancreas weight decreased by 21 %, and the content of amylase and lipase increased by 25 % and 233 %. However, exposure to PVC-MPs did not significantly affect the pancreas. Moreover, co-exposure to PVC-MPs and Cd worsened the reduction of pancreas weight and disruption of pancreas function compared to exposure to either substance alone. Furthermore, our research has revealed that exposure to PVC-MPs or Cd disrupted mitochondrial structure, reduced ATP levels by 10 % and 18 %, inhibited antioxidant enzyme activity, and increased malondialdehyde levels by 153.8 % and 232.5 %. It was found that exposure to either PVC-MPs or Cd can induce inflammation and fibrosis in the duck pancreas. Notably, co-exposure to PVC-MPs and Cd exacerbated inflammation and fibrosis, with the content of IL-1, IL-6, and TNF-α increasing by 169 %, 199 %, and 98 %, compared to Cd exposure alone. The study emphasizes the significance of comprehending the potential hazards linked to exposure to these substances. In conclusion, it presents promising preliminary evidence that PVC-MPs accumulate in duck pancreas, and increase the accumulation of Cd. Co-exposure to PVC-MPs and Cd disrupts the structure and function of mitochondria and promotes the development of pancreas inflammation and fibrosis.


Assuntos
Cádmio , Patos , Microplásticos , Estresse Oxidativo , Pâncreas , Animais , Cádmio/toxicidade , Estresse Oxidativo/efeitos dos fármacos , Pâncreas/efeitos dos fármacos , Microplásticos/toxicidade , Fibrose , Cloreto de Polivinila/toxicidade , Poluentes Químicos da Água/toxicidade
2.
J Hazard Mater ; 470: 134278, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38631247

RESUMO

Resuspension caused by human walking activities is an important source of indoor bioaerosols and has been associated with health effects such as allergies and asthma. However, it is unknown whether inhalation of resuspended bioaerosols is an important exposure pathway for airborne infection. Also, crucial factors influencing the resuspension of settled microbes have not been quantified. In this study, we experimentally investigated the resuspension of culturable bacteria from human-stepping on polyvinyl chloride (PVC) flooring under different conditions. We determined the bacterial resuspension emission factor (ER), a normalized resuspension parameter for the ratio of resuspended mass in the air to the mass of settled particles, for two common bacteria, Escherichia coli and Salmonella enterica. The investigation involved varying factors such as microbial surface-attached durations (0, 1, 2, and 3 days), the absence or presence of nutrients on flooring surfaces, and changes in relative humidity (RH) (35%, 65%, and 85%). The results showed that, in the absence of nutrients, the highest ER values for E. coli and S. enterica were 3.8 × 10-5 ± 5.2 × 10-6 and 5.3 × 10-5 ± 6.0 × 10-6, respectively, associated with surface-attached duration of 0 days. As the surface-attached duration increased from 0 to 3 days, ER values decreased by 92% and 84% for E. coli and S. enterica, respectively. In addition, we observed that ER values decreased with the increasing RH, which is consistent with particle adhesion theory. This research offers valuable insights into microbial resuspension during human walking activities and holds the potential for assisting in the assessment and estimation of risks related to human exposure to bioaerosols.


Assuntos
Escherichia coli , Umidade , Caminhada , Humanos , Pisos e Cobertura de Pisos , Salmonella enterica , Aerossóis , Poluição do Ar em Ambientes Fechados , Microbiologia do Ar , Cloreto de Polivinila/química , Nutrientes
3.
J Hazard Mater ; 470: 134167, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38598880

RESUMO

This study investigated the leaching of phthalate and non-phthalate plasticizers from polyvinyl chloride microplastics (MPs) into sediment and their degradation over a 30-d period via abiotic and biotic processes. The results showed that 3579% of plasticizers were released into the sediment from the MPs and > 99.9% degradation was achieved. Although a significantly higher degradation was found in plasticizer-added microcosms under biotic processes (overall, 94%), there was a noticeable abiotic loss (72%), suggesting that abiotic processes also play a role in plasticizer degradation. Interestingly, when compared with the initial sediment-water partitioning for plasticizers, the partition constants for low-molecular-weight compounds decreased in both microcosms, whereas those for high-molecular-weight compounds increased after abiotic degradation. Furthermore, changes in the bacterial community, abundance of plasticizer-degrading bacterial populations, and functional gene profiles were assessed. In all the microcosms, a decrease in bacterial community diversity and a notable shift in bacterial composition were observed. The enriched potential plasticizer-degrading bacteria were Arthrobacter, Bacillus, Desulfovibrio, Desulfuromonas, Devosia, Gordonia, Mycobacterium, and Sphingomonas, among which Bacillus was recognized as the key plasticizer degrader. Overall, these findings shed light on the factors affecting plasticizer degradation, the microbial communities potentially involved in biodegradation, and the fate of plasticizers in the environment.


Assuntos
Bactérias , Sedimentos Geológicos , Microplásticos , Ácidos Ftálicos , Plastificantes , Cloreto de Polivinila , Poluentes Químicos da Água , Cloreto de Polivinila/química , Plastificantes/metabolismo , Sedimentos Geológicos/microbiologia , Sedimentos Geológicos/química , Ácidos Ftálicos/metabolismo , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/metabolismo , Bactérias/metabolismo , Bactérias/classificação , Biodegradação Ambiental
4.
J Chem Phys ; 160(14)2024 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-38591687

RESUMO

The pervasive presence of nanoplastics (NPs) in the environment has gained increasing attention due to their accumulation in living organisms. These emerging contaminants inevitably interact with extracellular polymeric substances along respiratory or gastrointestinal tracts, and diverse organic coating on the surface of NPs, known as bio- or eco-corona, is formed. Although its impact on altering the NP properties and potential cell internalization has been extensively examined, studies on its role in NP partitioning in the cell membrane are elusive yet. In this work, molecular dynamics is used to investigate the formation of chitosan (CT) corona centered on a polyvinyl chloride (PVC) nanoparticle and the uptake of the resulting complex onto lipid membranes. Coarse-grained models compatible with the newly developed Martini 3.0 force field are implemented for the two polymers employing the atomistic properties as targets in the parameterization. The reliability of the coarse-grained polymer models is demonstrated by reproducing the structural properties of the PVC melt and of solvated CT strands, as well as by determining the conformation adopted by the latter at the NP surface. Results show that the spontaneous binding of CT chains of high and intermediate protonation degrees led to the formation of soft and hard corona that modulates the interaction of PVC core with model membranes. The structural changes of the corona adsorbed at the lipid-water interface enable a subsequent transfer of the NP to the center of the saturated lipid membranes and a complete or partial transition to a snorkel conformation depending on the hydrophilic/hydrophobic balance in the CT-PVC complex. Overall, the computational investigation of the coarse-grained model system provides implications for understanding how the eco-corona development influences the uptake and implicit toxicology of NPs.


Assuntos
Bicamadas Lipídicas , Nanopartículas , Bicamadas Lipídicas/química , Cloreto de Polivinila , Reprodutibilidade dos Testes , Nanopartículas/química , Carboidratos
5.
J Med Case Rep ; 18(1): 155, 2024 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-38581068

RESUMO

BACKGROUND: S-lon® (S) is a locally produced polyvinyl chloride-based solvent cement. It is a clear, slightly viscous liquid. Other constituents include 1-cyclohexanone, 3-butanone, and 1-acetone. It is used ubiquitously for building construction in Sri Lanka. Although the clinical effects of the compound have not yet been ascertained, the constituents have been implicated in neurotoxicity, respiratory tract, eye and skin irritation, and delayed liver and renal injury. CASE DESCRIPTION: A 42-year-old South Asian male presented following self-ingestion of S. His vital parameters were stable and initially managed symptomatically. A few hours later, he developed central nervous system depression and stridor requiring elective intubation. Examination of the upper airway revealed inflammation and edema. He was sedated and ventilated, and intravenous dexamethasone was administered. Attempts at removal of the nasogastric tube after extubation on day 3 failed. The patient had to be reintubated and sedated owing to extreme agitation not responding to routine doses of sedatives. The nasogastric tube had been amalgamated after reacting with S, forming a solid clump, later found after removal. The posterior pharynx and nasopharynx were packed and later removed before extubation. The patient made a full recovery and was transferred to the ward on day 5. CONCLUSION: Ingestion of a sufficient quantity of S could result in gut absorption with central nervous system depression, coma, and even death. No antidote is available for toxicity, and management is largely supportive. As witnessed in our patient, chemical laryngitis and upper airway inflammation may lead to upper airway obstruction. Chemical reactions with medical equipment may lead to unforeseen outcomes.


Assuntos
Edema , Cloreto de Polivinila , Humanos , Masculino , Adulto , Antídotos , Inflamação , Solventes
6.
Biomacromolecules ; 25(4): 2621-2634, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38457653

RESUMO

Postpolymerization modification of highly defined "scaffold" polymers is a promising approach for overcoming the existing limitations of controlled radical polymerization such as batch-to-batch inconsistencies, accessibility to different monomers, and compatibility with harsh synthesis conditions. Using multiple physicochemical characterization techniques, we demonstrate that poly(2-vinyl-4,4-dimethyl azlactone) (PVDMA) scaffolds can be efficiently modified with a coumarin derivative, doxorubicin, and camptothecin small molecule drugs. Subsequently, we show that coumarin-modified PVDMA has a high cellular biocompatibility and that coumarin derivatives are liberated from the polymer in the intracellular environment for cytosolic accumulation. In addition, we report the pharmacokinetics, biodistribution, and antitumor efficacy of a PVDMA-based polymer for the first time, demonstrating unique accumulation patterns based on the administration route (i.e., intravenous vs oral), efficient tumor uptake, and tumor growth inhibition in 4T1 orthotopic triple negative breast cancer (TNBC) xenografts. This work establishes the utility of PVDMA as a versatile chemical platform for producing polymer-drug conjugates with a tunable, stimuli-responsive delivery.


Assuntos
Lactonas , Neoplasias , Polímeros , Humanos , Distribuição Tecidual , Polímeros/química , Polivinil/química , Cloreto de Polivinila , Doxorrubicina/farmacologia
7.
Ann Afr Med ; 23(1): 70-75, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38358174

RESUMO

Background The I-LMA ventilates while providing a port for blind insertion of an endotracheal tube. The ILMA Fastrach is used especially for intubating in a difficult airway scenario. Its accompanying endotracheal tube is not economical nor readily available. In comparison, two alternative endotracheal tubes - polyvinyl chloride and wire-reinforced tubes were used for tracheal intubation through the ILMA. AIMS AND OBJECTIVES: The aim of our study was to compare the ease of intubation when using conventional PVC tubes versus the wire-reinforced flexometallic tubes with the ILMA-FastrachTM. The number of attempts, time taken and additional maneuvers were noted. Intra-operative hemodynamic changes, post-operative sore throat, bleeding and hoarseness of voice was recorded over a period of 24 hours. METHODOLOGY: After informed consent, 60 ASA I-II patients undergoing elective surgeries under general anesthesia were allocated to undergo blind intubation with the PVC tube or the wire-reinforced flexometallic tube. RESULTS: More attempts were required for successful intubation using the wire-reinforced tube than the PVC tube with 76.7% passing in the first attempt in the PVC, and 53.3% passing in the first attempt in the flexometallic group. (P = 0.4). Average time for intubation in the PVC group: 28.24 ± 7.22 seconds. Average time for intubation in the flexometallic tube: 45.8 ± 15.78 sec. Occurrence of post-operative sore throat was 13.3% in the PVC group and 26.6% in the flexometallic group, with minimal hoarseness of voice 3.3% in the PVC group and 10% in the flexometallic group. There was also a slightly higher hemodynamic response in those who were intubated with the flexometallic tube than a PVC tube. CONCLUSION: Intubating via the ILMA-Fastrach with the PVC tube offered better intubating conditions with regards to lesser time taken, lesser attempts, less manipulation, and less hemodynamic variations as compared to the patients who were intubated using the wire-reinforced tube.


Résumé Arrière-plan: L'I-LMA ventile tout en fournissant un port pour l'insertion aveugle d'une sonde endotrachéale. L'ILMA Fastrach est utilisé notamment pour l'intubation dans un scénario de voies respiratoires difficiles. La sonde endotrachéale qui l'accompagne n'est ni économique ni facilement disponible. En comparaison, deux tubes endotrachéaux alternatifs ­ du chlorure de polyvinyle et des tubes renforcés de fil ­ ont été utilisés pour l'intubation trachéale via l'ILMA. Buts et objectifs: Le but de notre étude était de comparer la facilité d'intubation lors de l'utilisation de tubes en PVC conventionnels par rapport aux tubes flexométalliques renforcés de fil avec l'ILMA-FastrachTM. Le nombre de tentatives, le temps nécessaire et les manÓuvres supplémentaires ont été notés. Les changements hémodynamiques peropératoires, les maux de gorge postopératoires, les saignements et l'enrouement de la voix ont été enregistrés sur une période de 24 heures. Méthodologie: Après consentement éclairé, 60 patients ASA I-II subissant des interventions chirurgicales électives sous anesthésie générale ont été affectés à une intubation aveugle avec le tube en PVC ou le tube flexométallique renforcé de fil. Résultats: Plus de tentatives ont été nécessaires pour réussir l'intubation à l'aide du tube renforcé par fil métallique qu'avec le tube PVC, avec 76,7 % de réussite lors de la première tentative dans le groupe PVC et 53,3 % de réussite lors de la première tentative dans le groupe flexométallique. (P = 0,4). Temps moyen d'intubation dans le groupe PVC : 28,24 ± 7,22 secondes. Temps moyen d'intubation dans le tube flexométallique : 45,8 ± 15,78 sec. La survenue de maux de gorge postopératoires était de 13,3 % dans le groupe PVC et de 26,6 % dans le groupe flexométallique, avec un enrouement minime de la voix de 3,3 % dans le groupe PVC et de 10 % dans le groupe flexométallique. Il y avait également une réponse hémodynamique légèrement plus élevée chez ceux qui étaient intubés avec le tube flexométallique qu'avec un tube en PVC. Conclusion: L'intubation via l'ILMA-Fastrach avec le tube en PVC offrait de meilleures conditions d'intubation en ce qui concerne moins de temps, moins de tentatives, moins de manipulations et moins de variations hémodynamiques par rapport aux patients intubés à l'aide du tube renforcé de fil Mots-clés: Facilité d'intubation, sonde endotrachéale flexométallique, masque laryngé d'intubation des voies respiratoires, sonde endotrachéale en polychlorure de vinyle.


Assuntos
Máscaras Laríngeas , Faringite , Humanos , Máscaras Laríngeas/efeitos adversos , Cloreto de Polivinila , Rouquidão/etiologia , Intubação Intratraqueal/efeitos adversos , Faringite/etiologia
8.
Int J Biol Macromol ; 263(Pt 2): 130511, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38423443

RESUMO

The mechanical properties of ionic conductive hydrogels (ICHs) are generally inadequate, leading to their susceptibility to breakage under external forces and consequently resulting in the failure of flexible electronic devices. In this work, a simple and convenient strategy was proposed based on the synergistic effect of ion cross-linking and salting out, in which the hydrogels consisting of polyvinyl alcohol (PVA) and xanthan gum (XG) were immersed in zinc sulfate (ZnSO4) solution to obtain ICHs with exceptional mechanical properties. The salt-out effects between PVA chains and SO42- ions along with the cross-linked network of XG chains and Zn2+ ions contribute to the desirable mechanical properties of ICHs. Notably, the mechanical properties of ICHs can be adjusted by changing the concentration of ZnSO4 solution. Consequently, the optimum fracture stress and the fracture energy can reach 3.38 MPa and 12.13 KJ m-2, respectively. Moreover, the ICHs demonstrated a favorable sensitivity (up to 2.05) when utilized as a strain sensor, exhibiting an accurate detection of human body movements across various amplitudes.


Assuntos
Hidrogéis , Polissacarídeos Bacterianos , Álcool de Polivinil , Humanos , Etanol , Cloreto de Sódio , Condutividade Elétrica , Íons , Poli A , Cloreto de Polivinila
9.
Environ Pollut ; 346: 123543, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38367691

RESUMO

The study focused on detecting and characterizing microplastics in outdoor and indoor air in Ranchi, Jharkhand, India during post-monsoon (2022) and winter (2023). Stereo microscopic analysis showed that plastic fibres had a dominant presence, fragments were less abundant, whereas fewer films could be detected in indoor and outdoor air. The atmospheric deposition of microplastics outdoors observed 465 ± 27 particles/m2/day in PM10 and 12104 ± 665 and 13833 ± 1152 particles/m2/day in PM2.5 in quartz and PTFE, respectively during the post-monsoon months. During winter, microplastic deposition rates in PM10 samples were found to be 689 ± 52 particles/m2/day and 19789 ± 2957 and 30087 ± 13402 in quartz and PTFE particles/m2/day respectively in PM2.5. The mean deposition rate in indoor environment during post-monsoon was 8.3 × 104 and 1.03 × 105 particles/m2/day in winter. During the post-monsoon period in PM10, there were fibres from 7.7 to 40 µm and fragments from 2.3 µm to 8.6 µm. Indoor atmospheric microplastics, fibres ranged from 1.2 to 47 µm and fragments from 0.9 to 16 µm present respectively during the post-monsoon season. Fibres and fragment sizes witnessed during winter were 3.6-6.9 µm and 2.3-34 µm, respectively. Indoor air films measured in the range of 4.1-9.6 µm. Fourier transform infrared analysis showed that outdoor air contained polyethylene, polypropylene, Polystyrene, whereas indoor air had polyvinyl chloride. Polyethylene mainly was present in outdoor air, with lesser polypropylene and polystyrene than indoors, where polyvinyl chloride and polyethylene were in dominant proportions. Elemental mapping of outdoor and indoor air samples showed the presence of elements on the microplastics. The HYSPLIT models suggest that the particles predominantly were coming from North-West during the post-monsoon season. Principal component analysis indicated wind speed and direction influencing the abundance of microplastics. Microplastics concentration showed strong seasonal influence and potential to act as reservoir of contaminants.


Assuntos
Poluentes Atmosféricos , Poluição do Ar em Ambientes Fechados , Poluição do Ar em Ambientes Fechados/análise , Poluentes Atmosféricos/análise , Microplásticos/análise , Plásticos/análise , Monitoramento Ambiental , Polipropilenos/análise , Poliestirenos/análise , Cloreto de Polivinila/análise , Quartzo , Índia , Polietileno/análise , Material Particulado/análise , Politetrafluoretileno
10.
Sci Rep ; 14(1): 4962, 2024 02 29.
Artigo em Inglês | MEDLINE | ID: mdl-38424121

RESUMO

Microplastics are exotic pollutants and are increasingly detected in soil, but it remains poorly understood how microplastics impact soil and plant systematically. The present study was conducted to evaluate the effects of polyvinyl chloride microplastics (PVC-MPs) on wheat seedlings performance and soil properties. Under the stress of PVC-MPs, no new substance and functional groups were generated in soil by X-ray diffraction and the fourier transform infrared spectroscopy analyses, whereas the diffraction and characteristic peaks and of soil was affected by PVC-MPs. Wheat seedlings shoot biomass and soil nitrate nitrogen were significantly inhibited by PVC-MPs. Chlorophylls were not significant affected by PVC-MPs. Superoxide dismutase, catalase, and peroxidase activities in wheat seedlings increased, while malondialdehyde and proline contents decreased significantly. Redundancy analysis displayed that wheat seedlings traits can be largely explained by soil nitrate nitrogen. Our results indicate that PVC-MPs have more significant influence on soil structure than on soil substance composition. Moreover, even though antioxidant enzyme activities were improved to respond the stress of PVC-MPs, wheat seedlings are not severely impacted by PVC-MPs. Besides, soil nitrate nitrogen is the main factor on wheat seedlings performance and wheat seedlings are prone to ensure the root growth under the stress of PVC-MPs.


Assuntos
Microplásticos , Plásticos , Plásticos/farmacologia , Triticum , Nitratos/farmacologia , Plântula , Cloreto de Polivinila , Solo/química , Antioxidantes/farmacologia
11.
Int J Biol Macromol ; 258(Pt 2): 129132, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38171433

RESUMO

Adhesives are used extensively in the wood industry. As resource and environmental issues become increasingly severe, the development of green and sustainable biomass-based adhesives has attracted increasing attention. In this work, a green wood adhesive is developed from poly(vinyl alcohol) and lignin with molecular designs of lignin extending beyond those in nature. The lignin undergoes extraction from corncob residue, aldehydration, and phenolisation (phenol, resorcinol, and catechol) to significantly increase the phenolic hydroxyl groups (over 7.92 mmol/g), which has the effect of enhancing the hydrogen bonding force between the adhesive and the wood, thereby greatly improving adhesive performance. Compared with pure PVA, polyphenol lignin-containing PVA showed improved adhesion strength and hydrophobicity. PVA/resorcinol-lignin has the significantly improved wood lap shear strength (6.27 MPa, 77.6 % improvement) and hydrophobicity (almost 100 % increase in wet shear strength). This research not only provides a green and high-performance alternative raw material for wood adhesives but also broadens the path for large-scale application of biomass.


Assuntos
Lignina , Polifenóis , Polifenóis/análise , Lignina/química , Álcool de Polivinil , Adesivos/química , Madeira/química , Fenóis/química , Metanol , Cloreto de Polivinila , Resorcinóis
12.
Int J Mol Sci ; 25(2)2024 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-38256100

RESUMO

In this study, a novel film of poly(vinyl alcohol) (PVA)/pullulan (PULL) with improved surface characteristics was prepared from poly(vinyl acetate) (PVAc)/PULL blend films with various mass ratios after the saponification treatment in a heterogeneous medium. According to proton nuclear magnetic resonance (1H-NMR), Fourier transform infrared, and X-ray diffraction results, it was established that the successful fabrication of saponified PVA/PULL (100/0, 90/10, and 80/20) films could be obtained from PVAc/PULL (100/0, 90/10, and 80/20) films, respectively, after 72 h saponification at 50 °C. The degree of saponification calculated from 1H-NMR analysis results showed that fully saponified PVA was obtained from all studied films. Improved hydrophilic characteristics of the saponified films were revealed by a water contact angle test. Moreover, the saponified films showed improved mechanical behavior, and the micrographs of saponified films showed higher surface roughness than the unsaponified films. This kind of saponified film can be widely used for biomedical applications. Moreover, the reported saponified film dressing extended the lifespan of dressing as determined by its self-healing capacity and considerably advanced in vivo wound-healing development, which was attributed to its multifunctional characteristics, meaning that saponified film dressings are promising candidates for full-thickness skin wound healing.


Assuntos
Etanol , Álcool de Polivinil , Glucanos , Bandagens , Poli A , Cloreto de Polivinila
13.
Sci Total Environ ; 913: 169759, 2024 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-38171462

RESUMO

Microplastics have emerged as a concerning contaminant in drinking water sources, potentially interacting with pathogenic microorganisms and affecting the disinfection processes. In this study, MS2 was selected as an alternative for the human enteric virus. The influence of microplastics polyvinylchloride (MPs-PVC) on ultraviolet light emitting diode (UV-LED) inactivation of MS2 was investigated under various water chemistry conditions, such as MPs-PVC concentration, pH, salinity, and humic acid concentration. The results revealed that higher concentrations of MPs-PVC led to the reduced inactivation of MS2 by decreased UV transmittance, hindering the disinfection process. Additionally, the inactivation efficiency of MS2 in the presence of MPs-PVC was influenced by pH, and acidic solution (pH at 4, 5, and 6) exhibited higher efficiency compared to alkaline solution (pH at 8 and 9) and neutral solution (pH at 7). The low Na+ concentrations (0-50 mM) had a noticeable effect on MS2 inaction efficiency in the presence of MPs-PVC, while the addition of Ca2+ posed an insignificant effect due to the preferential interaction with MPs-PVC. Furthermore, the inactivation rate of MS2 initially increased and then decreased with increasing the concentration of humic acid, which was significantly different without MPs-PVC. These findings shed light on the complex interactions between MPs-PVC and MS2 in the UV-LED disinfection process under various water-quality parameters, contributing to drinking water safety and treatment.


Assuntos
Água Potável , Microplásticos , Humanos , Plásticos , Levivirus , Raios Ultravioleta , Substâncias Húmicas , Cloreto de Polivinila
14.
Environ Sci Technol ; 58(4): 1954-1965, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38239129

RESUMO

Partial nitritation (PN) is an important partner with anammox in the sidestream line treating high-strength wastewater and primarily contributes to nitrous oxide (N2O) emissions in such a hybrid system, which also suffers from ubiquitous microplastics because of the growing usage and disposal levels of plastics. In this study, the influences of polyvinyl chloride microplastics (PVC-MPs) on N2O-contributing pathways were experimentally revealed to fill the knowledge gap on N2O emission from the PN system under microplastics stress. The long-term results showed that the overall PN performance was hardly affected by the low-dose PVC-MPs (0.5 mg/L) while obviously deteriorated by the high dose (5 mg/L). According to the batch tests, PVC-MPs reduced biomass-specific ammonia oxidation rates (AORs) by 5.78-21.94% and stimulated aerobic N2O production by 9.22-88.36%. Further, upon increasing dissolved oxygen concentrations from 0.3 to 0.9 mg O2/L, the degree of AOR inhibition increased but that of N2O stimulation was lightened. Site preference analysis in combination with metabolic inhibitors demonstrated that the contributions of hydroxylamine oxidation and heterotrophic denitrification to N2O production at 0.3 mg O2/L were enhanced by 18.84 and 10.34%, respectively, accompanied by a corresponding decreased contribution of nitrifier denitrification. Finally, the underlying mechanisms proposed for negative influences of PVC-MPs were bisphenol A leaching and reactive oxygen species production, which led to more cell death, altered sludge properties, and reshaped microbial communities, further resulting in enhanced N2O emission. Overall, this work implied that the ubiquitous microplastics are a hidden danger that cannot be ignored in the PN system.


Assuntos
Microplásticos , Óxido Nitroso , Óxido Nitroso/análise , Plásticos , Cloreto de Polivinila/metabolismo , Desnitrificação , Eliminação de Resíduos Líquidos , Reatores Biológicos , Esgotos , Oxirredução
15.
Int J Mol Sci ; 25(2)2024 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-38279316

RESUMO

The spin theory of fullerenes is taken as a basis concept to virtually exhibit a peculiar role of C60 fullerene in the free radical polymerization of vinyl monomers. Virtual reaction solutions are filled with the initial ingredients (monomers, free radicals, and C60 fullerene) as well as with the final products of a set of elementary reactions, which occurred in the course of the polymerization. The above objects, converted to the rank of digital twins, are considered simultaneously under the same conditions and at the same level of the theory. In terms of the polymerization passports of the reaction solutions, a complete virtual picture of the processes considered is presented.


Assuntos
Fulerenos , Polimerização , Radicais Livres , Cloreto de Polivinila
16.
Int J Comput Assist Radiol Surg ; 19(1): 151-161, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37099215

RESUMO

PURPOSE: The WHO reported an increasing trend in the number of new cases of breast cancer, making it the most prevalent cancer in the world. This fact necessitates the availability of highly qualified ultrasonographers, which can be achieved by the widespread implementation of training phantoms. The goal of the present work is to develop and test an inexpensive, accessible, and reproducible technology for creating an anatomical breast phantom for practicing ultrasound diagnostic skills in grayscale and elastography imaging, as well as ultrasound-guided biopsy sampling. METHODS: We used FDM 3D printer and PLA plastic for printing an anatomical breast mold. We made a phantom using a mixture of polyvinyl chloride plastisol, graphite powder, and metallic glitter to simulate soft tissues and lesions. Various degrees of elasticity were imparted using plastisols of stiffness ranging from 3 to 17 on the Shore scale. The lesions were shaped by hand. The materials and methods used are easily accessible and reproducible. RESULTS: Using the proposed technology, we have developed and tested a basic, differential, and elastographic versions of the breast phantom. The three versions of the phantom are anatomical and intended for use in medical education: the basic version is for practicing primary hand-eye coordination skills; the differential one is for practicing the differential diagnosis skills; the elastographic version helps developing the skills needed for assessing the stiffness of tissues. CONCLUSION: The proposed technology allows the creation of breast phantoms for practicing hand-eye coordination and develop the critical skills for navigation and assessment of the shape, margins, and size of the lesion, as well as performing an ultrasound-guided biopsy. It is cost-effective, reproducible, and easily implementable, and could be instrumental in generating ultrasonographers with crucial skills for accurate diagnosis of breast cancer, especially in low-resource settings.


Assuntos
Neoplasias da Mama , Técnicas de Imagem por Elasticidade , Humanos , Feminino , Cloreto de Polivinila , Mama/diagnóstico por imagem , Neoplasias da Mama/diagnóstico por imagem , Técnicas de Imagem por Elasticidade/métodos , Imagens de Fantasmas , Elasticidade
17.
Transfusion ; 64(1): 141-149, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38059437

RESUMO

BACKGROUND: Each unit of red blood cells (RBCs) produced represents a significant cost to the healthcare system. Unnecessary blood wastage should be minimized. In clinical settings, alterations to blood component bags after issue from the protected setting of the blood bank include pen markings, and those that are exposed to an infectious environment require surface disinfecting. These units may be discarded due to unclear effects on RBC quality. In this study, we investigate whether pen markings or surface disinfection negatively affects the quality of packed RBCs and whether pen ink diffuses through the blood bag. STUDY DESIGN AND METHODS: RBC bags were marked with pens (water, oil, or alcohol-based) or subjected to surface disinfection (ethanol, hydrogen peroxide [Preempt wipes], or benzalkonium chloride-based wipes [CaviWipes]) and sampled 24 h after applying the treatment and at day 42 post collection (n = 3 for each condition). The samples were analyzed for RBC in vitro quality markers. The presence of any ink in the RBC bags was investigated using mass spectrometry (n = 2). RESULTS: Data from 24 h and day 42 time points indicated no differences in RBC count, mean corpuscular volume, morphology, deformability, potassium content, or hemolysis for either pen markings or disinfectants when compared with their untreated controls (p > .05). No trace of ink was detected inside the bag. CONCLUSION: RBC units marked with ballpoint, gel, or Sharpie pens do not suffer a loss of in vitro quality, nor do RBC units which have been surface disinfected with 70% ethanol, Preempt wipes or CaviWipes.


Assuntos
Desinfetantes , Humanos , Desinfetantes/farmacologia , Tinta , Preservação de Sangue/métodos , Eritrócitos , Cloreto de Polivinila/química , Cloreto de Polivinila/farmacologia , Etanol/farmacologia , Compostos Orgânicos
18.
Int J Biol Macromol ; 257(Pt 1): 128566, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38056752

RESUMO

Conductive hydrogels have shown a great potential in the field of flexible electronic devices. However, conductive hydrogels prepare by traditional methods are difficult to combine high strength and toughness, which limits their application in various fields. In this study, a strategy for preparing conductive hydrogels with high strength and toughness by using the synergistic effect of biomineralization and salting-out was pioneered. In simple terms, by immersing the CaCl2 doped soy protein isolate/poly(vinyl alcohol)/dimethyl sulfoxide (SPI/PVA/DMSO) hydrogel in Na2CO3 and Na3Cit complex solution, the biomineralization aroused by Ca2+ and CO32-, and the salting-out effect of both NaCl and Na3Cit would enhance the mechanical properties of SPI/PVA/DMSO hydrogel. Meanwhile, the ionic conductivity of the hydrogel would also increase due the introduction of cation and anion. The mechanical and electrical properties of SPI/PVA/DMSO/CaCO3/Na3Cit hydrogels were significantly enhanced by the synergistic effect of biomineralization and salting-out. The optimum tensile strength, toughness, Young's modulus and ionic conductivity of the hydrogel were 1.4 ± 0.08 MPa, 0.51 ± 0.04 MPa and 1.46 ± 0.01 S/m, respectively. The SPI/PVA/DMSO/CaCO3/Na3Cit hydrogel was assembled into a strain sensor. The strain sensor had good sensitivity (GF = 3.18, strain in 20 %-500 %) and could be used to accurately detect various human movements.


Assuntos
Álcool de Polivinil , Proteínas de Soja , Humanos , Cloreto de Sódio , Biomineralização , Hidrogéis , Dimetil Sulfóxido , Etanol , Condutividade Elétrica , Cetonas , Poli A , Cloreto de Polivinila
19.
Int J Biol Macromol ; 254(Pt 3): 127653, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37918597

RESUMO

Thrombosis of extracorporeal circuits causes significant morbidity and mortality worldwide. In this study, plasma treatment technology and chemical grafting method were used to construct heparinized surfaces on the PVC substrate, which could not only reduce thrombosis but also decrease the side effects of the direct injection of anticoagulants. The PVC substrate was modified by plasma treatment technology firstly to obtain the active surface with the hydroxyl groups used for grafting. Then, heparin was grafted onto the modified PVC surface using different grafting strategies to prepare different heparinized surfaces. The experimental results indicated that the sodium alginate (SA) and carboxymethyl chitosan (CCS) used as interlayers could significantly increase the graft density of heparin to improve the anticoagulant effects and hemocompatibility of heparinized surfaces. In addition, the modification of heparin can further improve the anticoagulant effects. The CCS/low-molecular-weight heparin (LWMH) surface has the best anticoagulant properties, which can prolong the activated partial thromboplastin time (APTT) values of human plasma for about 35 s, reduce the hemolysis rates to <0.3 %, and perform well in the in-vitro blood circulation test. The heparinized surfaces prepared in this work have great application potential in anticoagulant treatment for medical devices.


Assuntos
Quitosana , Trombose , Humanos , Heparina/farmacologia , Heparina/química , Cloreto de Polivinila , Quitosana/química , Alginatos , Anticoagulantes/farmacologia , Anticoagulantes/química , Tempo de Tromboplastina Parcial
20.
J Hazard Mater ; 465: 133246, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38147754

RESUMO

The exposure of micro- and nanoplastics (MNPs) via medical device is still unknown to us. Herein, a visual quantitative detection of polyvinyl chloride (PVC) MPs and a fluorescent quantitative detection of PVC NPs were developed. To overcome the aggregation of PVC NPs, sodium dodecylbenzene sulfonate was used as the stabilizer of PVC NPs. The brand-new disposable PVC infusion tubes were found to carry PVC MPs with the average total number (ATN) of 931.4 particles and PVC NPs with the average mass of 0.040 µg, respectively. For four typical infusion fluids such as 0.9% sodium chloride, 5% glucose, 5% sodium bicarbonate, hydroxyethyl starch 40 sodium chloride, the released PVC MPs and NPs were ranged from 1003.6 ∼ 3494.6 particles and 0.042 ∼ 0.087 µg, respectively in stimulating normal infusion scenario (room temperature 4 h). The released PVC MPs and NPs were also increased with the infusion duration and temperature. The released PVC MPs are mainly in granular form, accounting for 38 ∼ 49% of the total PVC MPs. Our findings indicate PVC MNPs can enter the blood vessel directly with the infusion fluids during intravenous infusion and the PVC MNPs exposure risk towards patients deserves more attention.


Assuntos
Microplásticos , Poluentes Químicos da Água , Humanos , Plásticos , Cloreto de Sódio , Cloreto de Polivinila , Poluentes Químicos da Água/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...